cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215908 Smallest integer that can be represented as the sum of n squares of positive integers in at least n distinct ways.

Original entry on oeis.org

1, 50, 54, 52, 53, 54, 55, 56, 57, 61, 65, 66, 67, 68, 74, 78, 79, 81, 82, 83, 84, 88, 92, 93, 96, 98, 99, 100, 101, 102, 106, 107, 108, 112, 113, 114, 115, 116, 117, 121, 124, 125, 129, 130, 131, 132, 133, 134, 136, 137, 141, 142, 143, 147, 148, 149, 150, 151
Offset: 1

Views

Author

Alois P. Heinz, Aug 26 2012

Keywords

Comments

This sequence differs from A052261 first at n=11: a(11) = 65 < A052261(11) = 67. 65 has 12 distinct representations (as the sum of 11 squares of positive integers) whereas 67 has exactly 11.

Examples

			a(1) =  1 = 1^2.
a(2) = 50 = 1^2+7^2 = 5^2+5^2.
a(3) = 54 = 2^2+2*5^2 = 2*3^2+6^2 = 1^2+2^2+7^2.
a(11) = 65 = 3*1^2+2*2^2+6*3^2 = 2*1^2+5*2^2+3*3^2+4^2 = 1^2+8*2^2+2*4^2 = 6*1^2+3*3^2+2*4^2 = 5*1^2+3*2^2+3*4^2 = 10*2^2+5^2 = 5*1^2+2*2^2+3*3^2+5^2 = 4*1^2+5*2^2+4^2+5^2 = 8*1^2+2*4^2+5^2 = 7*1^2+2*2^2+2*5^2 = 7*1^2+2^2+2*3^2+6^2 = 8*1^2+2*2^2+7^2.
		

Crossrefs

Cf. A052261.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n0, b(n, i-1, t), 0)+
          `if`(i^2>n, 0, b(n-i^2, i, t-1)))))
        end:
    a:= proc(n) local k;
          for k while b(k, isqrt(k), n)
    				
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n < t, 0, If[n == t, 1, If[t == 0, 0, If[i > 0, b[n, i-1, t], 0] + If[i^2 > n, 0, b[n-i^2, i, t-1]]]]]; a[n_] := Module[{k}, For[k = 1, b[k, Sqrt[k] // Floor, n] < n, k++]; k]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 30 2013, translated from Maple *)