A215908 Smallest integer that can be represented as the sum of n squares of positive integers in at least n distinct ways.
1, 50, 54, 52, 53, 54, 55, 56, 57, 61, 65, 66, 67, 68, 74, 78, 79, 81, 82, 83, 84, 88, 92, 93, 96, 98, 99, 100, 101, 102, 106, 107, 108, 112, 113, 114, 115, 116, 117, 121, 124, 125, 129, 130, 131, 132, 133, 134, 136, 137, 141, 142, 143, 147, 148, 149, 150, 151
Offset: 1
Keywords
Examples
a(1) = 1 = 1^2. a(2) = 50 = 1^2+7^2 = 5^2+5^2. a(3) = 54 = 2^2+2*5^2 = 2*3^2+6^2 = 1^2+2^2+7^2. a(11) = 65 = 3*1^2+2*2^2+6*3^2 = 2*1^2+5*2^2+3*3^2+4^2 = 1^2+8*2^2+2*4^2 = 6*1^2+3*3^2+2*4^2 = 5*1^2+3*2^2+3*4^2 = 10*2^2+5^2 = 5*1^2+2*2^2+3*3^2+5^2 = 4*1^2+5*2^2+4^2+5^2 = 8*1^2+2*4^2+5^2 = 7*1^2+2*2^2+2*5^2 = 7*1^2+2^2+2*3^2+6^2 = 8*1^2+2*2^2+7^2.
Links
Crossrefs
Cf. A052261.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n
0, b(n, i-1, t), 0)+ `if`(i^2>n, 0, b(n-i^2, i, t-1))))) end: a:= proc(n) local k; for k while b(k, isqrt(k), n) -
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n < t, 0, If[n == t, 1, If[t == 0, 0, If[i > 0, b[n, i-1, t], 0] + If[i^2 > n, 0, b[n-i^2, i, t-1]]]]]; a[n_] := Module[{k}, For[k = 1, b[k, Sqrt[k] // Floor, n] < n, k++]; k]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 30 2013, translated from Maple *)
Comments