A215917 a(n) = -3*a(n-1) + a(n-3), with a(0)=0, a(1)=6, and a(2)=-15.
0, 6, -15, 45, -129, 372, -1071, 3084, -8880, 25569, -73623, 211989, -610398, 1757571, -5060724, 14571774, -41957751, 120812529, -347865813, 1001639688, -2884106535, 8304453792, -23911721688, 68851058529, -198248721795, 570834443697, -1643652272562
Offset: 0
References
- D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
- R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).
Links
- Index entries for linear recurrences with constant coefficients, signature (-3,0,1).
Programs
-
Maple
We have a(3) + 3*a(2) = 0, a(8) + 24*a(5) = 48 = a(3) + a(1)/2.
-
Mathematica
LinearRecurrence[{-3,0,1}, {0,6,-15}, 50]
-
PARI
concat(0,Vec(3*(x+2)/(1+3*x-x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
Comments