cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215932 Happy reversible primes.

Original entry on oeis.org

7, 13, 31, 79, 97, 167, 313, 383, 709, 739, 761, 907, 937, 1009, 1033, 1151, 1487, 1511, 1733, 1847, 1933, 3019, 3067, 3083, 3109, 3301, 3319, 3371, 3391, 3463, 3643, 3803, 7457, 7481, 7547, 7589, 7603, 7841, 9001, 9013, 9103, 9133, 9857, 10009, 10039, 10067
Offset: 1

Views

Author

Jayanta Basu, Mar 16 2013

Keywords

Comments

Happy numbers that are prime and if the digits are reversed they remain prime (and of course happy, since addition is commutative).
Intersection of A007500 and A007770. - N. J. A. Sloane, Mar 16 2013
This is to A031161 (palindromic lucky numbers) as prime happy numbers are to lucky numbers (A000959). - Jonathan Vos Post, Mar 16 2013

Crossrefs

Programs

  • C
    int main()
    {long unsigned int n,i,si,a[]={4,16,37,58,89,145,42,20},t,x,c1=0, sod(long unsigned int),rev(long unsigned int),prim(long unsigned int);
    for(n=2;n<=12000;n++) {t=n;si=0;while(si!=1){for(i=0;i<=7;i++){if(t==a[i]){si=1;break;}}
                            if(t==1){si=1;if(prim(n)==0){x=rev(n);if(prim(x)==0){printf(", %lu",n);c1=c1+1;}}}t=sod(t);}}}
    long unsigned int sod(long unsigned int m){long unsigned int d=0,r;while(m>0){r=m%10;d=d+r*r;m=m/10;} return(d);}
    long unsigned int rev(long unsigned int p){long unsigned int d=0,r;while(p>0){r=p%10;d=d*10+r;p=p/10;}return(d);}
    long unsigned int prim(long unsigned int n){long unsigned int i,d=0; for(i=2;i<=n/2;i++){if(n%i==0){d=1;break;}}return(d);}
  • Mathematica
    revpQ[n_] := PrimeQ[n] && PrimeQ[FromDigits@Reverse@IntegerDigits@n]; happyQ[n_] := Block[{w = n}, While[w > 6, w = Total[ IntegerDigits[w]^2]]; w == 1]; Select[Range[10^4], revpQ[#] && happyQ[#] &] (* Giovanni Resta, Mar 16 2013 *)