A215932 Happy reversible primes.
7, 13, 31, 79, 97, 167, 313, 383, 709, 739, 761, 907, 937, 1009, 1033, 1151, 1487, 1511, 1733, 1847, 1933, 3019, 3067, 3083, 3109, 3301, 3319, 3371, 3391, 3463, 3643, 3803, 7457, 7481, 7547, 7589, 7603, 7841, 9001, 9013, 9103, 9133, 9857, 10009, 10039, 10067
Offset: 1
Programs
-
C
int main() {long unsigned int n,i,si,a[]={4,16,37,58,89,145,42,20},t,x,c1=0, sod(long unsigned int),rev(long unsigned int),prim(long unsigned int); for(n=2;n<=12000;n++) {t=n;si=0;while(si!=1){for(i=0;i<=7;i++){if(t==a[i]){si=1;break;}} if(t==1){si=1;if(prim(n)==0){x=rev(n);if(prim(x)==0){printf(", %lu",n);c1=c1+1;}}}t=sod(t);}}} long unsigned int sod(long unsigned int m){long unsigned int d=0,r;while(m>0){r=m%10;d=d+r*r;m=m/10;} return(d);} long unsigned int rev(long unsigned int p){long unsigned int d=0,r;while(p>0){r=p%10;d=d*10+r;p=p/10;}return(d);} long unsigned int prim(long unsigned int n){long unsigned int i,d=0; for(i=2;i<=n/2;i++){if(n%i==0){d=1;break;}}return(d);}
-
Mathematica
revpQ[n_] := PrimeQ[n] && PrimeQ[FromDigits@Reverse@IntegerDigits@n]; happyQ[n_] := Block[{w = n}, While[w > 6, w = Total[ IntegerDigits[w]^2]]; w == 1]; Select[Range[10^4], revpQ[#] && happyQ[#] &] (* Giovanni Resta, Mar 16 2013 *)
Comments