A215949 Numbers n such that the sum of the distinct prime divisors of n that are congruent to 1 mod 4 equals the sum of the distinct prime divisors congruent to 3 mod 4.
4845, 5005, 9690, 10010, 11571, 13485, 14535, 19380, 20020, 23142, 24225, 25025, 26445, 26691, 26970, 28083, 29070, 34713, 35035, 35581, 36685, 38760, 40040, 40455, 43605, 46189, 46284, 47859, 48450, 50050, 52890, 53382, 53940, 54131, 55055, 56166, 58140
Offset: 1
Keywords
Examples
4845 is in the sequence because the distinct prime divisors are {3, 5, 17, 19} and 5+17 = 3+19 = 22, where {5, 17} ==1 mod 4 and {3, 19} ==3 mod 4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):for n from 2 to 60000 do:x:=factorset(n):n1:=nops(x):s1:=0:s3:=0:for m from 1 to n1 do: if irem(x[m],4)=1 then s1:=s1+x[m]:else if irem(x[m],4)=3 then s3:=s3+x[m]:else fi:fi:od:if n1>1 and s1=s3 then printf(`%d, `,n):else fi:od:
-
Mathematica
aQ[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, (t = Total[Select[p, Mod[#, 4] == 1 &]]) > 0 && t == Total[Select[p, Mod[#, 4] == 3 &]]]; Select[Range[10^5], aQ] (* Amiram Eldar, Sep 09 2019 *)
Comments