cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215949 Numbers n such that the sum of the distinct prime divisors of n that are congruent to 1 mod 4 equals the sum of the distinct prime divisors congruent to 3 mod 4.

Original entry on oeis.org

4845, 5005, 9690, 10010, 11571, 13485, 14535, 19380, 20020, 23142, 24225, 25025, 26445, 26691, 26970, 28083, 29070, 34713, 35035, 35581, 36685, 38760, 40040, 40455, 43605, 46189, 46284, 47859, 48450, 50050, 52890, 53382, 53940, 54131, 55055, 56166, 58140
Offset: 1

Views

Author

Michel Lagneau, Aug 28 2012

Keywords

Comments

If n is odd and in this sequence, then n * 2^k is in the sequence for any k.

Examples

			4845 is in the sequence because the distinct prime divisors are {3, 5, 17, 19} and 5+17 = 3+19 = 22, where {5, 17} ==1 mod 4 and {3, 19} ==3 mod 4.
		

Programs

  • Maple
    with(numtheory):for n from 2 to 60000 do:x:=factorset(n):n1:=nops(x):s1:=0:s3:=0:for m from 1 to n1 do: if irem(x[m],4)=1 then s1:=s1+x[m]:else if irem(x[m],4)=3 then s3:=s3+x[m]:else fi:fi:od:if n1>1 and s1=s3 then printf(`%d, `,n):else fi:od:
  • Mathematica
    aQ[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, (t = Total[Select[p, Mod[#, 4] == 1 &]]) > 0 && t == Total[Select[p, Mod[#, 4] == 3 &]]]; Select[Range[10^5], aQ] (* Amiram Eldar, Sep 09 2019 *)