A215968 Smallest k > 0 such that 240*k*p+1 , 6*k*p*(240*k*p+1)+1 , and 40*(6*k*p*(240*k*p+1)+1)+1 are prime or 0 if no solution, where p = prime(n).
11, 21, 36, 8, 2, 140, 389, 45, 56, 145, 235, 71, 0, 121, 155, 56, 280, 80, 109, 37, 187, 217, 21, 97, 89, 7, 66, 28, 2, 166, 26, 101, 129, 93, 148, 51, 39, 71, 28, 139, 65, 20, 78, 14, 149, 3, 411, 516
Offset: 1
Keywords
Examples
240*11*2+1=5281 prime, 6*11*2*5281+1=697093 prime, (240*11*2)^2+(240*11*2)+41=27883721 prime. p(1)=2 so k(1)=11.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..3500
- David Broadhurst, A 132738-digit prime of the form x^2+x+41, Aug 14 2012 (archive of the nmbrthry mailing list).
Crossrefs
Cf. A215697.
Programs
-
Mathematica
a[n_] := (Clear[k]; p = Prime[n]; R = 240*k*p + 1; Q = 6*k*p*R + 1; P = 40*Q + 1; If[FactorList[P][[1, 1]] > 1, Return[0], For[k = 1, True, k++, If[PrimeQ[P] && PrimeQ[Q] && PrimeQ[R], Return[k]]]]); Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 10 2012 *)
Comments