cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215971 Number of distinct values taken by 8th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 48, 115, 286, 717, 1815, 4574, 11505, 28546, 69705, 166010
Offset: 1

Views

Author

Alois P. Heinz, Aug 29 2012

Keywords

Examples

			a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 8th derivative at x=1: (x^(x^(x^x))) -> 269128; ((x^x)^(x^x)), ((x^(x^x))^x) -> 382520; (x^((x^x)^x)) -> 511216; (((x^x)^x)^x) -> 646272.
		

Crossrefs

Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A199296 (5th derivatives), A199883 (6th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215838. Column k=8 of A216368.

Programs

  • Maple
    # load programs from A215703, then:
    a:= n-> nops({map(f-> 8!*coeff(series(subs(x=x+1, f),
                      x, 9), x, 8), T(n))[]}):
    seq(a(n), n=1..10);