cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215981 Number of simple unlabeled graphs on n nodes with exactly 1 connected component that is a tree or a cycle.

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 12, 24, 48, 107, 236, 552, 1302, 3160, 7742, 19321, 48630, 123868, 317956, 823066, 2144506, 5623757, 14828075, 39299898, 104636891, 279793451, 751065461, 2023443033, 5469566586, 14830871803, 40330829031, 109972410222, 300628862481
Offset: 1

Views

Author

Alois P. Heinz, Aug 29 2012

Keywords

Examples

			a(5) = 4: .o-o-o.  .o-o-o.  .o-o-o.  .o-o-o.
          .|  / .  .|    .  .| |  .  . /|  .
          .o-o  .  .o-o  .  .o o  .  .o o  .
		

Crossrefs

Column k=1 of A215977.
The labeled version is A215851.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
        end:
    a:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)-
          (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2
        end:
    seq(a(n), n=1..40);
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/(n - 1)];
    a[n_] := a[n] = If[n > 2, 1, 0] + b[n] - (Sum[b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2;
    Array[a, 40] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)

Formula

a(1) = a(2) = 1, a(n) = 1 + A000055(n) for n>=3.