A216041 Number of redundant function representations of x^x^...^x with n x's and parentheses inserted in all possible ways.
0, 0, 0, 1, 5, 22, 84, 314, 1144, 4143, 14954, 54020, 195526, 709927, 2586629, 9459464, 34722823, 127923631, 472950024, 1754436962, 6528898588, 24369211839, 91214280785, 342315888666, 1287836972679, 4856186764942, 18351269337823, 69488543849735
Offset: 1
Keywords
Examples
a(4) = 1: there are A000108(3) = 5 valid parenthesizations of x^x^x^x, namely x^(x^(x^x)), x^((x^x)^x), (x^(x^x))^x, (x^x)^(x^x), ((x^x)^x)^x, but only A000081(4) = 4 distinct functions. (x^(x^x))^x and (x^x)^(x^x) represent the same function x -> x^(x^x*x), so 1 representation is redundant.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1)) end: C:= n-> binomial(2*n, n)/(n+1): a:= n-> C(n-1) -b(n): seq(a(n), n=1..40);
-
Mathematica
b[n_] := b[n] = If[n <= 1, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/(n-1)]; c[n_] := Binomial[2*n, n]/(n+1); a[n_] := c[n-1] - b[n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)
Comments