cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216041 Number of redundant function representations of x^x^...^x with n x's and parentheses inserted in all possible ways.

Original entry on oeis.org

0, 0, 0, 1, 5, 22, 84, 314, 1144, 4143, 14954, 54020, 195526, 709927, 2586629, 9459464, 34722823, 127923631, 472950024, 1754436962, 6528898588, 24369211839, 91214280785, 342315888666, 1287836972679, 4856186764942, 18351269337823, 69488543849735
Offset: 1

Views

Author

Alois P. Heinz, Aug 30 2012

Keywords

Comments

A000081(n) distinct functions are representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways. The number of valid parenthesizations is A000108(n-1). So the number of redundant representations is A000108(n-1) - A000081(n).
For n>=6 we have a(n) > A000081(n), so the number of redundant function representations is larger than the number of essential representations.

Examples

			a(4) = 1: there are A000108(3) = 5 valid parenthesizations of x^x^x^x, namely x^(x^(x^x)), x^((x^x)^x), (x^(x^x))^x, (x^x)^(x^x), ((x^x)^x)^x, but only A000081(4) = 4 distinct functions. (x^(x^x))^x and (x^x)^(x^x) represent the same function x -> x^(x^x*x), so 1 representation is redundant.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    C:= n-> binomial(2*n, n)/(n+1):
    a:= n-> C(n-1) -b(n):
    seq(a(n), n=1..40);
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/(n-1)];
    c[n_] := Binomial[2*n, n]/(n+1);
    a[n_] := c[n-1] - b[n];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)

Formula

a(n) = A000108(n-1) - A000081(n).