cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216063 a(n) is the conjectured highest power of n which has no two identical digits in succession.

Original entry on oeis.org

126, 133, 63, 32, 26, 27, 42, 33, 1, 16, 15, 11, 76, 15, 26, 19, 18, 8, 1, 45, 38, 19, 12, 16, 30, 22, 11, 21, 1, 16, 16, 11, 12, 11, 13, 10, 23, 10, 1, 22, 19, 6, 18, 25, 23, 11, 10, 6, 1, 6, 8, 20, 14, 17, 11, 13, 14, 13, 1, 15, 14, 17, 21, 16, 16, 9, 4, 11
Offset: 2

Views

Author

V. Raman, Sep 01 2012

Keywords

Comments

Contribution from Charles R Greathouse IV, Sep 17 2012: (Start)
a(n) = 0 for infinitely many n; such n have positive density in this sequence. Question: are such n of density 1?
A naive heuristic suggests that there are infinitely many n such that a(n) = 6 but only finitely many a(n) such that a(n) > 6. This suggests a weaker conjecture: this sequence is bounded. (End)

Examples

			3^133 = 2865014852390475710679572105323242035759805416923029389510561523 which has no two adjacent identical digits.
		

Crossrefs

Programs

  • Mathematica
    Table[mx = 0; Do[If[! MemberQ[Differences[IntegerDigits[n^k]], 0], mx = k], {k, 1000}]; mx, {n, 2, 100}] (* T. D. Noe, Sep 17 2012 *)
  • PARI
    isA043096(n)=my(v=digits(n));for(i=2,#v,if(v[i]==v[i-1],return(0)));1
    a(n)=my(best=0); if(n==14,76,for(k=1, max(9,94\sqrt(log(n))), if(isA043096(n^k), best=k)); best ) \\ (conjectural) Charles R Greathouse IV, Sep 17 2012