A216092 a(n) = 2^(2*5^(n-1)) mod 10^n.
4, 24, 624, 624, 90624, 890624, 2890624, 12890624, 212890624, 8212890624, 18212890624, 918212890624, 9918212890624, 59918212890624, 259918212890624, 6259918212890624, 56259918212890624, 256259918212890624
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..996
Programs
-
Maple
f:= n -> 2&^(2*5^(n-1)) mod 10^n: map(f, [$1..100]); # Robert Israel, Mar 13 2025
-
Mathematica
Table[PowerMod[5,2^n,10^n],{n,20}]-1 (* Harvey P. Dale, Dec 17 2017 *)
-
Sage
def A216092(n) : return crt(0, -1, 2^n, 5^n) # Eric M. Schmidt, Sep 01 2012
Formula
a(n) = (5^(2^n) mod 10^n) - 1.
a(n)^3 == a(n) (mod 10^n).
a(n-1) == a(n) (mod 10^(n-1)). - Robert Israel, Mar 13 2025
Comments