cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216116 G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x^4*A(x)).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 11, 17, 28, 49, 87, 152, 262, 453, 794, 1408, 2507, 4462, 7943, 14179, 25415, 45713, 82398, 148731, 268859, 486890, 883411, 1605582, 2922259, 5325377, 9716564, 17750332, 32464980, 59443403, 108951953, 199886003, 367052947, 674620772, 1240963218
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2012

Keywords

Examples

			A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 11*x^7 + 17*x^8 + 28*x^9 +...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^3)*x +
(1 + 2^2*x^3 + x^6)*x^2/2 +
(1 + 3^2*x^3 + 3^2*x^6 + x^9)*x^3/3 +
(1 + 4^2*x^3 + 6^2*x^6 + 4^2*x^9 + x^12)*x^4/4 +
(1 + 5^2*x^3 + 10^2*x^6 + 10^2*x^9 + 5^2*x^12 + x^15)*x^5/5 +
(1 + 6^2*x^3 + 15^2*x^6 + 20^2*x^9 + 15^2*x^12 + 6^2*x^15 + x^18)*x^6/6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x^4*A)+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, sum(j=0, m, binomial(m, j)^2*(x+x*O(x^n))^(3*j))*x^m/m)), n)}
    
  • PARI
    {a(n)=polcoeff(((1-x-x^4) - sqrt((1-x-x^4)^2 - 4*x^5 +x^6*O(x^n)))/(2*x^5), n)}
    for(n=0,45,print1(a(n),", "))

Formula

G.f.: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(3*k) ).
G.f.: A(x) = ((1-x-x^4) - sqrt((1-x-x^4)^2 - 4*x^5))/(2*x^5).
a(n) = A023427(n+1) for n>=0.