A216121 Irregular triangle read by rows: T(n,k) is the number of permutations in C_n (= the 1-cycles in S_n) having k stretching pairs.
1, 1, 2, 5, 1, 16, 6, 2, 63, 31, 20, 5, 1, 294, 168, 150, 70, 30, 6, 2, 1585, 997, 1072, 691, 423, 171, 75, 20, 5, 1, 9692, 6522, 7882, 6176, 4744, 2612, 1598, 656, 300, 100, 30, 6, 2, 66275, 46891, 61356, 54561, 49013, 32689, 24285, 13429, 7812, 3795, 1759, 651, 263, 75, 20, 5, 1
Offset: 1
Examples
T(4,1) = 1 because 3142 has 1 stretching pair (2,3); the other five 1-cycles in S_4 have no stretching pairs. Triangle starts: 1; 1; 2; 5, 1; 16, 6, 2; 63, 31, 20, 5, 1; 294, 168, 150, 70, 30, 6, 2; ...
References
- E. Lundberg and B. Nagle, A permutation statistic arising in dynamics of internal maps. (submitted)
Links
- E. Clark and R. Ehrenborg, Explicit expressions for the extremal excedance statistic, European J. Combinatorics, 31, 2010, 270-279.
- J. Cooper, E. Lundberg, and B. Nagle, Generalized pattern frequency in large permutations, Electron. J. Combin. 20, 2013, #P28.
Programs
-
Maple
n := 7: with(combinat): nrcyc := proc (p) local nrfp, pc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: nrcyc := proc (p) local nrfp, pc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else end if end do: ct end proc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: sp := proc (p) local ct, i, j: ct := 0: for i from 2 to nops(p)-2 do for j from i+1 to nops(p)-1 do if p[i] < i and i < j and j < p[j] then ct := ct+1 else end if end do end do: ct end proc: P[n] := permute(n): C[n] := {}: for j to factorial(n) do if nrcyc(P[n][j]) = 1 then C[n] := `union`(C[n], {P[n][j]}) else end if end do: sort(add(t^sp(C[n][j]), j = 1 .. factorial(n-1)));
Formula
The values of T(n,k) have been found by straightforward counting (with Maple). The Maple program (improvable!) yields the generating polynomial of the specified row n. Within the program, sp(p) is the number of stretching pairs of the permutation p.
Extensions
More terms from Alois P. Heinz, Apr 15 2017
Comments