cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216121 Irregular triangle read by rows: T(n,k) is the number of permutations in C_n (= the 1-cycles in S_n) having k stretching pairs.

Original entry on oeis.org

1, 1, 2, 5, 1, 16, 6, 2, 63, 31, 20, 5, 1, 294, 168, 150, 70, 30, 6, 2, 1585, 997, 1072, 691, 423, 171, 75, 20, 5, 1, 9692, 6522, 7882, 6176, 4744, 2612, 1598, 656, 300, 100, 30, 6, 2, 66275, 46891, 61356, 54561, 49013, 32689, 24285, 13429, 7812, 3795, 1759, 651, 263, 75, 20, 5, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 26 2013

Keywords

Comments

A stretching pair of a permutation p in S_n is a pair (i,j) (1 <= i < j <= n) satisfying p(i) < i < j < p(j). For example, for the permutation 31254 in S_5 the pair (2,4) is stretching because p(2) = 1 < 2 < 4 < p(4) = 5.
Sum of entries in row n is (n-1)! = A000142(n-1).
T(n,0) = A136127(n-1).
Sum_{k>=1} k*T(n,k) = n!*(n-3)/24 = A061206(n-3).

Examples

			T(4,1) = 1 because 3142 has 1 stretching pair (2,3); the other five 1-cycles in S_4 have no stretching pairs.
Triangle starts:
    1;
    1;
    2;
    5,   1;
   16,   6,   2;
   63,  31,  20,  5,  1;
  294, 168, 150, 70, 30, 6, 2;
  ...
		

References

  • E. Lundberg and B. Nagle, A permutation statistic arising in dynamics of internal maps. (submitted)

Crossrefs

Programs

  • Maple
    n := 7: with(combinat): nrcyc := proc (p) local nrfp, pc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else  end if end do: ct end proc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: nrcyc := proc (p) local nrfp, pc: nrfp := proc (p) local ct, j: ct := 0: for j to nops(p) do if p[j] = j then ct := ct+1 else  end if end do: ct end proc: pc := convert(p, disjcyc): nops(pc)+nrfp(p) end proc: sp := proc (p) local ct, i, j: ct := 0: for i from 2 to nops(p)-2 do for j from i+1 to nops(p)-1 do if p[i] < i and i < j and j < p[j] then ct := ct+1 else  end if end do end do: ct end proc: P[n] := permute(n): C[n] := {}: for j to factorial(n) do if nrcyc(P[n][j]) = 1 then C[n] := `union`(C[n], {P[n][j]}) else  end if end do: sort(add(t^sp(C[n][j]), j = 1 .. factorial(n-1)));

Formula

The values of T(n,k) have been found by straightforward counting (with Maple). The Maple program (improvable!) yields the generating polynomial of the specified row n. Within the program, sp(p) is the number of stretching pairs of the permutation p.

Extensions

More terms from Alois P. Heinz, Apr 15 2017