A216136 E.g.f. A(x) satisfies: A(x)^A(x) = 1/(1 - x*A(x)^3).
1, 1, 6, 75, 1456, 38560, 1296786, 52935680, 2542934024, 140557741488, 8787984793440, 613224873661752, 47245653830341176, 3983499665690137944, 364844394810538703256, 36070922050704987248280, 3828821598701561543783616, 434302348322255060713797120
Offset: 0
Keywords
Examples
E.g.f. A(x) = 1 + x + 6*x^2/2! + 75*x^3/3! + 1456*x^4/4! + 38560*x^5/5! +... where A(x)^A(x) = 1 + x + 8*x^2/2! + 114*x^3/3! + 2388*x^4/4! + 66480*x^5/5! +... 1/(1-x*A(x)^3) = 1 + x + 8*x^2/2! + 114*x^3/3! + 2388*x^4/4! + 66480*x^5/5! +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..338
Programs
-
Mathematica
Table[Sum[(3*n-k+1)^(k-1)*(-1)^(n-k)*StirlingS1[n,k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Sep 17 2013 *)
-
PARI
a(n, m=1)=sum(k=0, n, m*(3*n-k+m)^(k-1)*(-1)^(n-k)*stirling(n, k, 1)); for(n=0,21,print1(a(n),", "))
-
PARI
{a(n, m=1)=sum(k=0, n, m*(3*n-k+m)^(k-1)*polcoeff(prod(j=1, n-1, 1+j*x), n-k))} for(n=0,21,print1(a(n),", "))
-
PARI
{a(n)=local(A=1+x); for(i=0, n, A=exp(-log(1-x*(A^3+x*O(x^n)))/A)); n!*polcoeff(A, n)} for(n=0,21,print1(a(n),", "))
Formula
(1) a(n) = Sum_{k=0..n} (3*n-k+1)^(k-1)* (-1)^(n-k)* Stirling1(n,k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
(2) a(n,m) = Sum_{k=0..n} m*(3*n-k+m)^(k-1) * (-1)^(n-k) *Stirling1(n,k) ;
which is equivalent to the following:
(3) a(n,m) = Sum_{k=0..n} m*(3*n-k+m)^(k-1) * {[x^(n-k)] Product_{j=1..n-1} (1+j*x)};
(4) a(n,m) = n!*Sum_{k=0..n} m*(3*n-k+m)^(k-1) * {[x^(n-k)] (-log(1-x)/x)^k/k!}.
Limit n->infinity a(n)^(1/n)/n = exp(3*(1-r)/(r-3))*(3-r+exp(r/(3-r))) = 2.685525290558..., where r = 0.77397865498224... is the root of the equation exp(r/(3-r)) = ((r-3)/r)*(r + LambertW(-1,-r*exp(-r))). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ s*sqrt((s^s-1)/(3*(s^s-1)*(3*s^s-1)-s)) * n^(n-1) * (s^(3+s)/(s^s-1))^n / exp(n), where s = 1.4158017407588097722625060603... is the root of the equation (1+log(s))*s = 3*(s^s-1). - Vaclav Kotesovec, Dec 28 2013
Comments