A216154 Triangle read by rows, T(n,k) n>=0, k>=0, generalization of A000255.
1, 1, 1, 3, 4, 1, 11, 21, 9, 1, 53, 128, 78, 16, 1, 309, 905, 710, 210, 25, 1, 2119, 7284, 6975, 2680, 465, 36, 1, 16687, 65821, 74319, 35035, 7945, 903, 49, 1, 148329, 660064, 857836, 478464, 133630, 19936, 1596, 64, 1, 1468457, 7275537, 10690812, 6879684, 2279214, 419958, 44268, 2628, 81, 1
Offset: 0
Examples
1, 1, 1, 3, 4, 1, 11, 21, 9, 1, 53, 128, 78, 16, 1, 309, 905, 710, 210, 25, 1, 2119, 7284, 6975, 2680, 465, 36, 1, 16687, 65821, 74319, 35035, 7945, 903, 49, 1, 148329, 660064, 857836, 478464, 133630, 19936, 1596, 64, 1,
Programs
-
Maple
A216154 := proc(n,k) local L, Z; L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*C(n,n-k)*C(n-1,n-k)): Z := (n,k) -> add(C(-j,-n)*L(j,k), j=0..n); Z(n+1, k+1) end: seq(seq(A216154(n,k), k=0..n), n=0..9); # Peter Luschny, Apr 13 2016
-
Mathematica
T[0, 0] = 1; T[0, ] = 0; T[n, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (2k+1) T[n-1, k] + (k+1) (k+2) T[n-1, k+1]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
-
Sage
def A216154_triangle(dim): M = matrix(ZZ,dim,dim) for n in (0..dim-1): M[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): M[n,k] = M[n-1,k-1]+(1+2*k)*M[n-1,k]+(k+1)*(k+2)*M[n-1,k+1] return M A216154_triangle(9)
Formula
Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n>=1 T(n,k) = T(n-1,k-1)+(1+2*k)*T(n-1,k)+(k+1)*(k+2)*T(n-1,k+1).
Let Z(n, k) = Sum_{j=0..n} C(-j, -n)*L(j, k) where L denotes the unsigned Lah numbers A271703. Then T(n, k) = Z(n+1, k+1). - Peter Luschny, Apr 13 2016