cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216154 Triangle read by rows, T(n,k) n>=0, k>=0, generalization of A000255.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 11, 21, 9, 1, 53, 128, 78, 16, 1, 309, 905, 710, 210, 25, 1, 2119, 7284, 6975, 2680, 465, 36, 1, 16687, 65821, 74319, 35035, 7945, 903, 49, 1, 148329, 660064, 857836, 478464, 133630, 19936, 1596, 64, 1, 1468457, 7275537, 10690812, 6879684, 2279214, 419958, 44268, 2628, 81, 1
Offset: 0

Views

Author

Peter Luschny, Sep 19 2012

Keywords

Examples

			     1,
     1,      1,
     3,      4,      1,
    11,     21,      9,      1,
    53,    128,     78,     16,      1,
   309,    905,    710,    210,     25,      1,
  2119,   7284,   6975,   2680,    465,     36,      1,
16687,  65821,  74319,  35035,   7945,    903,     49,      1,
148329, 660064, 857836, 478464, 133630,  19936,   1596,     64,      1,
		

Crossrefs

A000255 (col. 0), A110450 (diag. n,n-2).

Programs

  • Maple
    A216154 := proc(n,k) local L, Z;
    L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*C(n,n-k)*C(n-1,n-k)):
    Z := (n,k) -> add(C(-j,-n)*L(j,k), j=0..n);
    Z(n+1, k+1) end:
    seq(seq(A216154(n,k), k=0..n), n=0..9); # Peter Luschny, Apr 13 2016
  • Mathematica
    T[0, 0] = 1; T[0, ] = 0; T[n, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (2k+1) T[n-1, k] + (k+1) (k+2) T[n-1, k+1]; T[, ] = 0;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
  • Sage
    def A216154_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(1+2*k)*M[n-1,k]+(k+1)*(k+2)*M[n-1,k+1]
        return M
    A216154_triangle(9)

Formula

Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n>=1 T(n,k) = T(n-1,k-1)+(1+2*k)*T(n-1,k)+(k+1)*(k+2)*T(n-1,k+1).
Let Z(n, k) = Sum_{j=0..n} C(-j, -n)*L(j, k) where L denotes the unsigned Lah numbers A271703. Then T(n, k) = Z(n+1, k+1). - Peter Luschny, Apr 13 2016