A216157 Difference between the sum of the even divisors and the sum of the odd divisors of phi(n).
1, 1, 5, 1, 4, 5, 4, 5, 6, 5, 20, 4, 13, 13, 29, 4, 13, 13, 20, 6, 12, 13, 30, 20, 13, 20, 40, 13, 24, 29, 30, 29, 52, 20, 65, 13, 52, 29, 78, 20, 32, 30, 52, 12, 24, 29, 32, 30, 61, 52, 70, 13, 78, 52, 65, 40, 30, 29, 120, 24, 65, 61, 116, 30, 48, 61, 60, 52
Offset: 3
Keywords
Examples
a(13) = 20 because the divisors of phi(13) = 12 are {1, 2, 3, 4, 6, 12} and (12 + 6 + 4 +2) - (3 + 1) = 20.
Links
- Michel Lagneau, Table of n, a(n) for n = 3..10000
Programs
-
Maple
with(numtheory):for n from 3 to 100 do:x:=divisors(phi(n)):n1:=nops(x):s0:=0:s1:=0:for m from 1 to n1 do: if irem(x[m],2)=0 then s0:=s0+x[m]:else s1:=s1+x[m]:fi:od:if s0>s1 then printf(`%d, `,s0-s1):else fi:od:
-
Mathematica
Table[Total[Select[Divisors[EulerPhi[n]], EvenQ[#]&]]-Total[Select[Divisors[EulerPhi[n]], OddQ[#]&]], {n,3,80}]
Comments