cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216169 Composite numbers > 9 which yield a prime whenever a 0 is inserted between any two digits.

Original entry on oeis.org

49, 119, 121, 133, 161, 169, 203, 253, 299, 301, 319, 323, 403, 407, 473, 493, 511, 539, 551, 581, 611, 667, 679, 713, 869, 901, 913, 943, 1007, 1067, 1079, 1099, 1211, 1273, 1691, 1729, 1799, 1909, 2021, 2047, 2101, 2117, 2359, 2407, 2533, 2717, 2759, 2899
Offset: 1

Views

Author

Paolo P. Lava, Sep 03 2012

Keywords

Examples

			2359 is not prime but 23509, 23059 and 20359 are all primes.
		

Crossrefs

Subset of composite numbers in A164329. - M. F. Hasler, May 10 2018

Programs

  • Maple
    A216169:=proc(q,x)
    local a,b,c,i,n,ok;
    for n from 10 to q do
    if not isprime(n) then
      a:=n; b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=n; ok:=1;
      for i from 1 to b-1 do c:=a+9*10^i*trunc(a/10^i)+10^i*x;
        if not isprime(c) then ok:=0; break; fi; od;
      if ok=1 then print(n); fi;
    fi; od; end: A216169(1000,0);
  • Mathematica
    Select[Range[10,3000],CompositeQ[#]&&AllTrue[Table[FromDigits[ Insert[ IntegerDigits[ #],0,n]],{n,2,IntegerLength[#]}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 13 2018 *)
  • PARI
    is(n, L=logint(n+!n, 10)+1, P)={!isprime(n) && !for(k=1, L-1, isprime([10*P=10^(L-k),1]*divrem(n, P))||return) && n>9} \\ M. F. Hasler, May 10 2018

Extensions

Name edited by M. F. Hasler, May 10 2018