cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216201 Square array T, read by antidiagonals : T(n,k) = 0 if n-k>=3 or if k-n>=4, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 0, 4, 6, 3, 0, 0, 4, 10, 9, 0, 0, 0, 0, 14, 19, 9, 0, 0, 0, 0, 14, 33, 28, 0, 0, 0, 0, 0, 0, 47, 61, 28, 0, 0, 0, 0, 0, 0, 47, 108, 89, 0, 0, 0, 0, 0, 0, 0, 0, 155, 197, 89, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 12 2013

Keywords

Examples

			Square array begins:
1, 1, 1,  1,  0,   0,   0,   0,   0,   0, 0, 0, 0, ... row n = 0
1, 2, 3,  4,  4,   0,   0,   0,   0,   0, 0, 0, 0, ... row n = 1
1, 3, 6, 10, 14,  14,   0,   0,   0,   0, 0, 0, 0, ... row n = 2
0, 3, 9, 19, 33,  47,  47,   0,   0,   0, 0, 0, 0, ... row n = 3
0, 0, 9, 28, 61, 108, 155, 155,   0,   0, 0, 0, 0, ... row n = 4
0, 0, 0, 28, 89, 197, 352, 507, 507,   0, 0, 0, 0, ... row n = 5
0, 0, 0,  0, 89, 286, 638,1147,1652,1652, 0, 0, 0, ... row n = 6
...
		

References

  • E. Lucas, Théorie des nombres, Tome 1, Albert Blanchard, Paris, 1958, p.89

Crossrefs

Formula

T(n,n) = A052975(n).
T(n,n+1) = A060557(n).
T(n+1,n) = T(n+2,n) = A094790(n+1).
T(n,n+2) = T(n,n+3) = A094789(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = (-1)^n*A078038(n).