cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216232 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 3 or if k-n >= 5, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 4, 6, 3, 0, 0, 5, 10, 9, 0, 0, 0, 5, 15, 19, 9, 0, 0, 0, 0, 20, 34, 28, 0, 0, 0, 0, 0, 20, 54, 62, 28, 0, 0, 0, 0, 0, 0, 74, 116, 90, 0, 0, 0, 0, 0, 0, 0, 74, 190, 206, 90, 0, 0, 0, 0, 0, 0, 0, 0, 264, 396, 296, 0, 0, 0, 0, 0, 0, 0, 0, 0, 264, 660, 692, 296, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2013

Keywords

Comments

Arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
  1, 1, 1,  1,  1,   0,   0,   0,   0,   0, 0, ... row n=0
  1, 2, 3,  4,  5,   5,   0,   0,   0,   0, 0, ... row n=1
  1, 3, 6, 10, 15,  20,  20,   0,   0,   0, 0, ... row n=2
  0, 3, 9, 19, 34,  54,  74,  74,   0,   0, 0, ... row n=3
  0, 0, 9, 28, 62, 116, 190, 264, 264,   0, 0, ... row n=4
  0, 0, 0, 28, 90, 206, 396, 660, 924, 924, 0, ... row n=5
  ...
Array, read by rows, with 0 omitted:
   1,   1,   1,   1,    1
   1,   2,   3,   4,    5,    5
   1,   3,   6,  10,   15,   20,   20
        3,   9,  19,   34,   54,   74,   74
             9,  28,   62,  116,  190,  264,  264
                 28,   90,  206,  396,  660,  924,  924
                       90,  296,  692, 1352, 2276, 3200, 3200
  ...
		

References

  • E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome 1, p. 89.

Crossrefs

Formula

T(n,n) = A094817(n), for n > 0.
T(n+1,n) = T(n+2,n) = A094803(n).
T(n,n+1) = A007052(n).
T(n,n+2) = A094821(n+1).
T(n,n+3) = T(n,n+4) = A094806(n).
Sum_{k=0..n} T(n-k,k) = A217730(n). - Philippe Deléham, Mar 22 2013