A216234 Cumulated number of increasing admissible cuts of rooted plane trees of size n.
0, 1, 2, 8, 44, 312, 2772, 30024, 385688, 5737232, 96959396, 1834244296, 38390799592, 880648730416, 21968596282440, 592083291341520, 17144219069647920, 530774988154571040, 17495673315094986180, 611738880367145595720, 22614424027640541372360
Offset: 0
Keywords
References
- O. Bodini, A. Genitrini and F. Peschanski. Enumeration and Random Generation of Concurrent Computations. In proc. 23rd International Meeting on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA'12), Discrete Mathematics and Theoretical Computer Science, pp 83-96, 2012.
Links
- O. Bodini, A. Genitrini, F. Peschanski, A Quantitative Study of Pure Parallel Processes, arXiv preprint arXiv:1407.1873, 2014
Crossrefs
Cf. A007852.
Programs
-
Mathematica
Flatten[{0,RecurrenceTable[{-16*(-3+n)*(-7+2*n)*(-5+2*n)*a[-3+n]+4*(-5+2*n)*(3-12*n+4*n^2)*a[-2+n]-2*(28-23*n+2*n^3)*a[-1+n]+(-2+n)*(-1+2*n)*a[n]==0,a[1]==1,a[2]==2,a[3]==8},a,{n,1,20}]}] (* Vaclav Kotesovec, Mar 08 2014 *)
-
Python
def a(n): if n < 3: return n l = [0,1,2] for i in range(n-2): l[i%3] = ( (16*i-64*i**3)*l[i%3]+(12+72*i+112*i**2+32*i**3)*l[(i+1)%3]+(-26-62*i-4*i**3-36*i**2)*l[(i+2)%3] ) / (-5-7*i-2*i**2) return l[i%3]
Formula
P-recurrence: (16*n-64*n^3)*a(n)+(12+72*n+112*n^2+32*n^3)*a(n+1)+(-26-62*n-4*n^3-36*n^2)*a(n+2)+(5+7*n+2*n^2)*a(n+3) = 0; a(0)=0; a(1)=1; a(2)=2.
a(n) ~ 2^(n-1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Mar 08 2014
Comments