Antoine Genitrini has authored 2 sequences.
A238887
Cumulated number of leaves in computations trees induced by process trees of size n.
Original entry on oeis.org
0, 1, 3, 12, 63, 418, 3460, 35309, 434879, 6296319, 104601742, 1956519181, 40622160668, 926192254412, 22993939511337, 617288387438399, 17815464892300869, 550018928405927892, 18086444341575141093, 631071177229005331170, 23286118567945953909224
Offset: 0
- Olivier Bodini, Antoine Genitrini and Frédéric Peschanski, The Combinatorics of Non-determinism, In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 24, pp. 425-436, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013).
A216234
Cumulated number of increasing admissible cuts of rooted plane trees of size n.
Original entry on oeis.org
0, 1, 2, 8, 44, 312, 2772, 30024, 385688, 5737232, 96959396, 1834244296, 38390799592, 880648730416, 21968596282440, 592083291341520, 17144219069647920, 530774988154571040, 17495673315094986180, 611738880367145595720, 22614424027640541372360
Offset: 0
- O. Bodini, A. Genitrini and F. Peschanski. Enumeration and Random Generation of Concurrent Computations. In proc. 23rd International Meeting on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA'12), Discrete Mathematics and Theoretical Computer Science, pp 83-96, 2012.
-
Flatten[{0,RecurrenceTable[{-16*(-3+n)*(-7+2*n)*(-5+2*n)*a[-3+n]+4*(-5+2*n)*(3-12*n+4*n^2)*a[-2+n]-2*(28-23*n+2*n^3)*a[-1+n]+(-2+n)*(-1+2*n)*a[n]==0,a[1]==1,a[2]==2,a[3]==8},a,{n,1,20}]}] (* Vaclav Kotesovec, Mar 08 2014 *)
-
def a(n):
if n < 3:
return n
l = [0,1,2]
for i in range(n-2):
l[i%3] = ( (16*i-64*i**3)*l[i%3]+(12+72*i+112*i**2+32*i**3)*l[(i+1)%3]+(-26-62*i-4*i**3-36*i**2)*l[(i+2)%3] ) / (-5-7*i-2*i**2)
return l[i%3]
Comments