cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216263 Expansion of 1 / ((1-2*x)*(1-4*x+x^2)).

Original entry on oeis.org

1, 6, 27, 110, 429, 1638, 6187, 23238, 87021, 325358, 1215435, 4538430, 16942381, 63239286, 236031147, 880918070, 3287706669, 12270039678, 45792714187, 170901341358, 637813699821, 2380355555078, 8883612714795, 33154103692710, 123732818833261, 461777205194766, 1723376069054667
Offset: 0

Views

Author

Philippe Deléham, Mar 15 2013

Keywords

Crossrefs

A diagonal of A214846.
Cf. A001075.

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - 2 x)*(1 - 4 x + x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Aug 05 2021 *)
  • PARI
    Vec(1/((1-2*x)*(1-4*x+x^2)) + O(x^30)) \\ Colin Barker, Feb 05 2017

Formula

G.f.: 1/((1-2*x)*(1-4*x+x^2)).
a(n) = 6*a(n-1) - 9*a(n-2) + 2*a(n-3), a(0) = 1, a(1) = 6, a(2) = 27.
3*a(n) = -2^(n+2) + A001075(n+2). - R. J. Mathar, Mar 29 2013
a(n) = (-2^(3+n) + (7-4*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(7+4*sqrt(3))) / 6. - Colin Barker, Feb 05 2017