cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214846 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 6 or if k-n >= 6, T(k,0) = T(0,k) = 1 if 0 <= k <= 5, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 0, 6, 15, 20, 15, 6, 0, 0, 6, 21, 35, 35, 21, 6, 0, 0, 0, 27, 56, 70, 56, 27, 0, 0, 0, 0, 27, 83, 126, 126, 83, 27, 0, 0, 0, 0, 0, 110, 209, 252, 209, 110, 0, 0, 0, 0, 0, 0, 110, 319, 461, 461, 319, 110, 0, 0, 0, 0, 0, 0, 0, 429, 780, 922, 780, 429, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2013

Keywords

Comments

An arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
  1, 1,  1,   1,   1,   1,    0,    0,    0,     0,     0, ...
  1, 2,  3,   4,   5,   6,    6,    0,    0,     0,     0, ...
  1, 3,  6,  10,  15,  21,   27,   27,    0,     0,     0, ...
  1, 4, 10,  20,  35,  56,   83,  110,  110,     0,     0, ...
  1, 5, 15,  35,  70, 126,  209,  319,  429,   429,     0, ...
  1, 6, 21,  56, 126, 252,  461,  780, 1209,  1638,  1638, ...
  0, 6, 27,  83, 209, 461,  922, 1702, 2911,  4549,  6187, ...
  0, 0, 27, 110, 319, 780, 1702, 3404, 6315, 10864, 17051, ...
  ...
		

Crossrefs

Cf. similar sequences: A000007, A216218, A216216, A216210, A216219.

Formula

T(n,n) = A087944(n).
T(n,n+1) = T(n+1,n) = A087946(n).
T(n+2,n) = T(n,n+2) = A001353(n+1).
T(n+3,n) = T(n,n+3) = A216271(n).
T(n+5,n) = T(n+4,n) = T(n,n+4) = T(n,n+5) = A216263(n).
Sum_{k=0..n} T(n-k,k) = A216241(n).

A216271 Expansion of (1-x)/((1-2x)(1-4x+x^2)).

Original entry on oeis.org

1, 5, 21, 83, 319, 1209, 4549, 17051, 63783, 238337, 890077, 3322995, 12403951, 46296905, 172791861, 644886923, 2406788599, 8982333009, 33522674509, 125108627171, 466912358463, 1742541855257, 6503257159717, 24270490977915, 90578715140551, 338044386361505, 1261598863859901
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2013

Keywords

Comments

Partial sums are in A216263.
Diagonal of square array A214846.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x)/((1-2x)(1-4x+x^2)),{x,0,30}],x] (* Harvey P. Dale, Oct 05 2019 *)

Formula

a(n) = A001353(n+2) - A087946(n+1).
G.f.: (1-x)/(1-6x+9x^2-2x^3).
a(n) = 6*a(n-1) - 9*a(n-2) + 2*a(n-3), a(0) = 1, a(1) = 5, a(2) = 21.
Sum_{k=0..n} a(k) = A216263(n).
Showing 1-2 of 2 results.