A216265 Number of primes between n^3 - n and n^3.
0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 0, 2, 3, 2, 2, 2, 2, 1, 2, 3, 4, 1, 3, 3, 2, 3, 3, 3, 2, 1, 3, 2, 4, 4, 3, 2, 1, 2, 7, 4, 2, 2, 4, 3, 4, 7, 3, 5, 7, 4, 6, 5, 4, 2, 8, 4, 3, 4, 2, 5, 7, 7, 4, 3, 8, 4, 1, 3, 2, 10, 4, 5, 4, 6, 7, 8, 6, 6, 1, 6, 8, 8, 7, 7, 6, 7, 4, 10
Offset: 1
Keywords
Examples
a(9) = 1 because between 9^3 - 9 and 9^3 there is just one prime (727). a(10) = 2 because between 10^3 - 10 and 10^3 there are two primes (991 and 997). a(11) = 2 because between 11^3 - 11 and 11^3 there are two primes (1321 and 1327).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Java
import java.math.BigInteger; public class A216265 { public static void main (String[] args) { for (long n = 1; n < (1 << 21); n++) { long cube = n*n*n, c = 0; for (long k = cube - n; k < cube; ++k) { BigInteger b1 = BigInteger.valueOf(k); if (b1.isProbablePrime(2)) { if (b1.isProbablePrime(80)) ++c; } } System.out.printf("%d, ", c); } } } // Ratushnyak
-
Maple
a:= n-> add(`if`(isprime(t), 1, 0), t=n^3-n..n^3): seq(a(n), n=1..100); # Alois P. Heinz, Mar 17 2013
-
Mathematica
Table[PrimePi[n^3] - PrimePi[n^3 - n], {n, 100}] (* Alonso del Arte, Mar 17 2013 *)
-
PARI
default(primelimit,10^7); a(n) = primepi(n^3) - primepi(n^3-n); /* Joerg Arndt, Mar 16 2013 */
Comments