A216269 Numbers n such that n^2 - 1 is a tetrahedral number (A000292).
1, 6, 11, 45, 51, 209, 660099
Offset: 1
Links
- Wikipedia, Siegel's theorem on integral points
Programs
-
Mathematica
t = {}; Do[tet = n (n + 1) (n + 2)/6; If[IntegerQ[s = Sqrt[tet + 1]], AppendTo[t, s]], {n, 0, 100000}]; t (* T. D. Noe, Mar 18 2013 *)
-
Python
import math for i in range(1<<30): t = i*(i+1)*(i+2)//6 + 1 sr = int(math.sqrt(t)) if sr*sr == t: print(sr)
Comments