A216280 Number of nonnegative solutions to the equation x^4 + y^4 = n.
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16561
- F. A. Izadi, F. Khoshnam, K. Nabardi, Sums of two biquadrates and elliptic curves of rank ≥4 (2012). arXiv:1202.5676 [math.NT], 2012.
- F. A. Izadi, F. Khoshnam, K. Nabardi, Sums of two biquadrates and elliptic curves of rank ≥ 4, Math. J. Okayama Univ. 56 (2014), 51-63.
Crossrefs
Programs
-
Mathematica
Reap[For[n = 1, n <= 1000, n++, r = Reduce[0 <= x <= y && x^4 + y^4 == n, {x, y}, Integers]; sols = Which[r === False, 0, r[[0]] == And, 1, r[[0]] == Or, Length[r], True, Print[n, " ", r]]; If[sols != 0, Print[n, " ", sols, " ", r]]; Sow[sols]]][[2, 1]] (* Jean-François Alcover, Feb 22 2019 *)
-
PARI
a(n)=my(t=thue(thueinit('x^4+1,1),n)); sum(i=1,#t, t[i][1]>=0 && t[i][2]>=t[i][1]) \\ Charles R Greathouse IV, Jan 12 2017
-
PARI
first(n)=my(T=thueinit('x^4+1,1),v=vector(n),t); for(k=1,n, t=thue(T,k); v[k]=sum(i=1,#t, t[i][1]>=0 && t[i][2]>=t[i][1])); v \\ Charles R Greathouse IV, Jan 12 2017
Extensions
Offset added by Charles R Greathouse IV, Jan 12 2017
Comments