cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216281 Sum of n-th derivatives at x=1 of all functions that are representable as x^x^...^x with n x's and parentheses inserted in all possible ways.

Original entry on oeis.org

1, 2, 21, 392, 11980, 471966, 24655820, 1548264752, 118039822488, 10482116888640, 1076582148812808, 125439212178037728, 16473767684928836256, 2410412979008498588208, 390793360308270931979400, 69716064087131957637475968
Offset: 1

Views

Author

Alois P. Heinz, Sep 04 2012

Keywords

Examples

			For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56 => a(n) = 156+100+80+56 = 392.
		

Crossrefs

Row sums of A216349, A216350.

Programs

  • Maple
    F:= proc(n) F(n):= `if`(n=1, [x], map(h->x^h, g(n-1, n-1))) end:
    g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(seq(
           mul(F(i)[w[t]-t+1], t=1..j)*v, w=combinat[choose](
           [$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
        end:
    a:= n-> add(n!*coeff(series(subs(x=x+1, f), x, n+1), x, n), f=F(n)):
    seq(a(n), n=1..12);
  • Mathematica
    F[n_] := If[n == 1, {x}, x^#& /@ g[n - 1, n - 1]];
    g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten@Table[Table[Table[ Product[F[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {w, Subsets[Range[Length[ F[i]] + j - 1], {j}]}], {v, g[n - i*j, i - 1]}], {j, 0, n/i}]];
    a[n_] := a[n] = Sum[n!*SeriesCoefficient[f /. x -> x + 1, {x, 0, n}], {f, F[n]}];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Nov 14 2023, after Alois P. Heinz *)

Extensions

a(16) from Alois P. Heinz, May 09 2016