A216290 Values of k such that 100k+1, 100k+3, 100k+7, 100k+9, 100k+13, 100k+27 are consecutive primes.
1, 40426, 85405, 191434, 209896, 369853, 598774, 652468, 719986, 797116, 1028749, 1097752, 1874920, 1892458, 1898398, 2041768, 2389861, 2390344, 2462944, 2651881, 3182338, 3230953, 3314239, 3531106, 3717985, 3734347, 3898165, 3940438, 3994096, 4075846, 4523548, 4870279, 5176018
Offset: 1
Keywords
Examples
1 is in the sequence as 100*1 + 1 = 101, 100*1 + 3 = 103, 100*1 + 7 = 107, 100*1 + 9 = 109, 100*1 + 13= 113, 100*1 + 27 = 127 are consecutive primes of the form 100k+1, 100k+3, 100k+7, 100k+9, 100k+13, 100k+27 respectively where k = 1. - _David A. Corneth_, Jun 21 2022
Links
- David A. Corneth, Table of n, a(n) for n = 1..12224 (Using Luhn table from A022006)
Programs
-
PARI
is(n) = {my(v = [100*n+1,100*n+3,100*n+7,100*n+9,100*n+13,100*n+27], t = 0); forprime(p = 100*n+1, oo, t++; if(v[t] != p, return(0)); if(t >= 6, return(1)))} \\ David A. Corneth, Jun 21 2022
-
Python
from sympy import nextprime def ok(n): t, targets = 100*n, [100*n+d for d in [1, 3, 7, 9, 13, 27]] return all((t:=nextprime(t)) == targets[i] for i in range(6)) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jun 21 2022