A216355 G.f.: A(x) = exp( Sum_{n>=1} A000172(n^2)*x^n/n ) where Franel number A000172(n) = Sum_{k=0..n} C(n,k)^3.
1, 2, 175, 1760658, 1583078442003, 109611485085305859618, 547114144500297420116784959134, 189879050147329004652707990280499398833960, 4482752989702739533106941067588051779825642693578987967, 7097288803262045586874332782527584396862908242415791224663533782367102
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 175*x^2 + 1760658*x^3 + 1583078442003*x^4 +... where log(A(x)) = 2*x + 346*x^2/2 + 5280932*x^3/3 + 6332299624282*x^4/4 + 548057409594239814752*x^5/5 +...+ A000172(n^2)*x^n/n +...
Programs
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m^2, binomial(m^2, j)^3)*x^m/m+x*O(x^n)))); polcoeff(A, n)} for(n=0, 31, print1(a(n), ", "))