cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A216174 Number of Schroeder n-paths with no flat steps at ground level and equally spaced returns.

Original entry on oeis.org

1, 1, 3, 7, 27, 91, 439, 1807, 9059, 41803, 214231, 1037719, 5460691, 27297739, 145340511, 746123815, 4011076915, 20927156707, 113608631567, 600318853927, 3279271467435, 17524510115443, 96226513851535, 518431875418927, 2861594917241083, 15521473553775091
Offset: 0

Views

Author

David Scambler, Sep 13 2012

Keywords

Examples

			For n=2 the 3 paths are UUDD, UFD, and UDUDUD.
		

Crossrefs

Programs

  • Maple
    b:= n-> coeff(series((1-x-(1-6*x+x^2)^(1/2))/(2*x), x, n+3), x, n):
    a:= n-> `if`(n=0, 1, add(b(d-1)^(n/d), d=numtheory[divisors](n))):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 13 2012
  • Mathematica
    Table[If[n == 0, 1, Sum[(2*Hypergeometric2F1[-d + 2, d + 1, 2, -1])^(n/d), {d, Divisors[n]}]], {n, 0, 26}]

Formula

a(0)=1, a(n) = Sum_{d|n} (2*hypergeom([-d+2, d+1], [2], -1))^(n/d) = Sum_{d|n} A006318(d-1)^(n/d) for n >=1.
Showing 1-1 of 1 results.