cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216471 Smallest k such that k*n^4 + 1 is an n-th power.

Original entry on oeis.org

1, 3, 271, 61535, 50812751, 21358519, 237419801716063, 1135029771535910655, 8972959412935210028959, 91620671606331844031, 1599468651197092802422012477487, 702649782312030280795815963215, 978557919186290794806960014681034796687
Offset: 1

Views

Author

Michel Lagneau, Sep 10 2012

Keywords

Examples

			a(3) = 271 because 271*3^4 + 1 = 21952 = 28^3.
		

Crossrefs

Programs

  • Mathematica
    a={}; Do[k = 2; While[ !IntegerQ[(k^n - 1)/n^4], k++ ]; AppendTo[a, (k^n-1)/n^4], {n, 1, 20}]; a

A216472 Smallest k such that k*n^5 + 1 is an n-th power.

Original entry on oeis.org

1, 7, 2269, 4129151, 30762501251, 2239747210, 27448639374405504361, 2413133306001931169183743, 382044091289242990177493431399, 92389875896827641843360078, 41175701028835553188828526348886198418157, 251171485090270512606177135871202294053615
Offset: 1

Views

Author

Michel Lagneau, Sep 10 2012

Keywords

Examples

			a(3) = 2269 because 2269*3^5 + 1 = 551368 =  82^3.
		

Crossrefs

Programs

  • Mathematica
    a={}; Do[k = 2; While[ !IntegerQ[(k^n - 1)/n^5], k++ ]; AppendTo[a, (k^n-1)/n^5], {n, 1, 20}]; a
Showing 1-2 of 2 results.