cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216454 G.f. satisfies: A(x) = (1 + x*(3-x)*A(x)) * (1 + x^2*A(x)).

Original entry on oeis.org

1, 3, 9, 30, 107, 396, 1503, 5820, 22907, 91371, 368523, 1500354, 6157669, 25448907, 105821865, 442409844, 1858482563, 7840766601, 33207750819, 141137445258, 601768494201, 2573246794374, 11032997250357, 47421297986868, 204286464525165, 881900059488741
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2012

Keywords

Comments

The radius of convergence of the g.f. A(x) is r = 2/(5+sqrt(17)) with A(r) = 2/(1-3*r) = (11+3*sqrt(17))/4.
More generally, if A(x) = (1 + x*(t-x)*A(x)) * (1 + x^2*A(x)), |t|>0, then
A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(t-x)^(n-k) )
where the radius of convergence r of the g.f. A(x) satisfies
r = (1-r)^2/(t-r) = (1-t*r)/(2*(1-r)) with A(r) = 1/(r*(1-r)) = 2/(1-t*r).

Examples

			G.f.: A(x) = 1 + 3*x + 9*x^2 + 30*x^3 + 107*x^4 + 396*x^5 + 1503*x^6 +...
The logarithm of the g.f. begins:
log(A(x)) = ((3-x) + x)*x + ((3-x)^2 + 2^2*x*(3-x) + x^2)*x^2/2 +
((3-x)^3 + 3^2*x*(3-x)^2 + 3^2*x^2*(3-x) + x^3)*x^3/3 +
((3-x)^4 + 4^2*x*(3-x)^3 + 6^2*x^2*(3-x)^2 + 4^2*x^3*(3-x) + x^4)*x^4/4 +
((3-x)^5 + 5^2*x*(3-x)^4 + 10^2*x^2*(3-x)^3 + 10^2*x^3*(3-x)^2 + 5^2*x^4*(3-x) + x^5)*x^5/5 +...
Explicitly,
log(A(x)) = 3*x + 9*x^2/2 + 36*x^3/3 + 149*x^4/4 + 618*x^5/5 + 2592*x^6/6 + 11007*x^7/7 + 47181*x^8/8 + 203634*x^9/9 + 883674*x^10/10 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2/(1-3*x+Sqrt[(1-3*x)^2-4*x^3*(3-x)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k*(3-x)^(m-k) + x*O(x^n)))),n)}
    
  • PARI
    {a(n)=polcoeff(2/(1-3*x+sqrt((1-3*x)^2-4*x^3*(3-x) +x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(3-x)^(n-k) ).
G.f.: 2 / ( 1-3*x + sqrt( (1-3*x)^2 - 4*x^3*(3-x) ) ).
Recurrence: 3*(n+3)*a(n) = (19*n+30)*a(n-1) - 3*(11*n+3)*a(n-2) + 9*(5*n-6)*a(n-3) - 6*(4*n-9)*a(n-4) + 4*(n-3)*a(n-5). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ sqrt(7378+1794*sqrt(17)) * ((5+sqrt(17))/2)^n / (16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 17 2013