cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216487 Smallest prime factor of n^(2n) - 1 having the form k*n+1.

Original entry on oeis.org

3, 7, 5, 11, 7, 29, 17, 19, 11, 23, 13, 53, 29, 31, 17, 10949, 19, 108301, 41, 43, 23, 47, 73, 101, 53, 109, 29, 59, 31, 373, 257, 67, 103, 71, 37, 149, 191, 79, 41, 83, 43, 173, 89, 181, 47, 659, 97, 197, 101, 103, 53, 107, 109, 881, 113, 229, 59, 709, 61, 977
Offset: 2

Views

Author

Michel Lagneau, Sep 11 2012

Keywords

Comments

The corresponding values of k are in A216506.

Examples

			a(7) = 29 because 7^14 - 1 = 2 ^ 4 * 3 * 29 * 113 * 911 * 4733 and the smallest prime divisor of the form k*n+1 is 29 = 4*7+1.
		

Crossrefs

Programs

  • Mathematica
    Table[p=First/@FactorInteger[n^(2*n)-1]; Select[p, Mod[#1, n] == 1 &, 1][[1]], {n, 2, 41}]
    a[n_] := Module[{m = n + 1}, While[!PrimeQ[m] || PowerMod[n, 2*n, m] != 1, m += n]; m]; Array[a, 100, 2] (* Amiram Eldar, May 17 2024 *)
  • PARI
    a(n) = {my(m = n + 1); while(!isprime(m) || Mod(n, m)^(2*n) != 1, m += n); m;} \\ Amiram Eldar, May 17 2024

Formula

a(n) = Min{A187022(n), A187023(n)}.

Extensions

Data corrected by Amiram Eldar, May 17 2024