A216495 Primes p with property that there exists a number d>0 such that numbers p-d, p-2*d are primes.
7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..9617
Programs
-
Mathematica
prms = 2; fQ[p_] := Module[{d = 1}, While[prms*d < p && Union[PrimeQ[p - Range[prms]*d]] != {True}, d++]; prms*d < p]; Select[Prime[Range[2, PrimePi[283]]], fQ] (* T. D. Noe, Sep 08 2012 *)
-
PARI
is(n)=my(t); forprime(p=2,n-4,if(isprime((t=(n-p)\2)+p) && isprime(2*t+p) && isprime(n), return(1))); 0 \\ Charles R Greathouse IV, Sep 10 2014
Comments