cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216499 The maximum possible number of rooted triples consistent with any galled-tree (level-1 phylogenetic network) containing exactly n leaves.

Original entry on oeis.org

0, 0, 0, 2, 7, 16, 32, 55, 87, 130, 184, 252, 335, 433, 550, 686, 842, 1022, 1224, 1451, 1706, 1987, 2299, 2642, 3015, 3426, 3870, 4349, 4870, 5428, 6028, 6672, 7357, 8091, 8871, 9696, 10576, 11505, 12486, 13525, 14616, 15766, 16976, 18242, 19574, 20968
Offset: 0

Views

Author

Jesper Jansson, Sep 08 2012

Keywords

Comments

Chao et al. (2012) proved: lim_{n --> infinity} a(n) / (3 (n choose 3)) = 2 (sqrt(3) - 1)/3 = 0.488033... and: a(n) / (3 (n choose 3)) > 2 (sqrt(3) - 1)/3 = 0.488033... for all n > 2.
a(n) = A061061(n) + (n choose 3).

References

  • J. Byrka, P. Gawrychowski, K. T. Huber and S. Kelk. Worst-case optimal approximation algorithms for maximizing triple consistency within phylogenetic networks. Journal of Discrete Algorithms, Vol. 8, Number 1, pp. 65-75, 2010.
  • K.-M. Chao, A.-C. Chu, J. Jansson, R. S. Lemence and A. Mancheron. Asymptotic Limits of a New Type of Maximization Recurrence with an Application to Bioinformatics. Proceedings of the Ninth Annual Conference on Theory and Applications of Models of Computation (TAMC 2012), Lecture Notes in Computer Science, Vol. 7287, pp. 177-188, Springer-Verlag Berlin Heidelberg, 2012.
  • J. Jansson, N. B. Nguyen and W.-K. Sung. Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network. SIAM Journal on Computing, Vol. 35, Number 5, pp. 1098-1121, Society for Industrial and Applied Mathematics (SIAM), 2006.

Crossrefs

Cf. A000292 (the analogous sequence for level-0 phylogenetic networks).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, max(seq(
          binomial(i, 3) +2*binomial(i, 2)*(n-i)+
          i*binomial(n-i, 2) + a(n-i), i=1..n)))
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 28 2016
  • Mathematica
    a[0] = 0; a[n_] := a[n] = Max[Table[Binomial[i, 3] + 2*Binomial[i, 2]*(n-i) + i*Binomial[n-i, 2] + a[n-i], {i, 1, n}]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Oct 24 2016 *)

Formula

a(0) = 0,
a(n) = max_{1<=i<=n} [C(i,3) +2*C(i,2)*(n-i) +i*C(n-i,2) +a(n-i)] for n>0.