cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216585 G.f.: exp( Sum_{n>=1} A000984(n)*A002426(n)*x^n/n ), where A000984 is the central binomial coefficients and A002426 is the central trinomial coefficients.

Original entry on oeis.org

1, 2, 11, 66, 485, 3842, 32712, 291568, 2697610, 25679316, 250190125, 2484270622, 25062816127, 256275246582, 2650947762450, 27697861115740, 291943603838698, 3101066786857876, 33167191013319532, 356924515784037128, 3862299973917286526, 42003704374124712172
Offset: 0

Views

Author

Paul D. Hanna, Sep 09 2012

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 11*x^2 + 66*x^3 + 485*x^4 + 3842*x^5 + 32712*x^6 +...
such that
log(A(x)) = 2*1*x + 6*3*x^2/2 + 20*7*x^3/3 + 70*19*x^4/4 + 252*51*x^5/5 + 924*141*x^6/6 +...+ A000984(n)*A002426(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,binomial(2*m,m)*polcoeff((1+x+x^2)^m,m)*x^m/m+x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))

Formula

Logarithmic derivative yields A216584.