A216585 G.f.: exp( Sum_{n>=1} A000984(n)*A002426(n)*x^n/n ), where A000984 is the central binomial coefficients and A002426 is the central trinomial coefficients.
1, 2, 11, 66, 485, 3842, 32712, 291568, 2697610, 25679316, 250190125, 2484270622, 25062816127, 256275246582, 2650947762450, 27697861115740, 291943603838698, 3101066786857876, 33167191013319532, 356924515784037128, 3862299973917286526, 42003704374124712172
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 11*x^2 + 66*x^3 + 485*x^4 + 3842*x^5 + 32712*x^6 +... such that log(A(x)) = 2*1*x + 6*3*x^2/2 + 20*7*x^3/3 + 70*19*x^4/4 + 252*51*x^5/5 + 924*141*x^6/6 +...+ A000984(n)*A002426(n)*x^n/n +...
Programs
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n+1,binomial(2*m,m)*polcoeff((1+x+x^2)^m,m)*x^m/m+x*O(x^n))),n)} for(n=0,30,print1(a(n),", "))
Formula
Logarithmic derivative yields A216584.