A216586 G.f.: exp( Sum_{n>=1} A002426(n)/2 * A002426(n) * x^n/n ), where A002426 is the central binomial coefficients and A002426 is the central trinomial coefficients.
1, 1, 5, 28, 202, 1579, 13375, 118858, 1098458, 10453452, 101872926, 1012109860, 10218226307, 104570617520, 1082633236498, 11321654913838, 119438468577559, 1269787015989428, 13592294300856138, 146390465351654178, 1585337895099162317, 17253991887494062080
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 5*x^2 + 28*x^3 + 202*x^4 + 1579*x^5 + 13375*x^6 +... such that log(A(x)) = 1*1*x + 3*3*x^2/2 + 10*7*x^3/3 + 35*19*x^4/4 + 126*51*x^5/5 + 462*141*x^6/6 +...+ A001700(n)*A002426(n)*x^n/n +...
Programs
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n+1,binomial(2*m,m)/2*polcoeff((1+x+x^2)^m,m)*x^m/m+x*O(x^n))),n)} for(n=0,30,print1(a(n),", "))
Formula
Self-convolution yields A216585.