cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216616 G.f. satisfies: A(x) = (1 + x*(1-x)*A(x)) * (1 + x^2*A(x)^2).

Original entry on oeis.org

1, 1, 1, 3, 7, 15, 39, 103, 267, 719, 1975, 5447, 15199, 42863, 121647, 347455, 998559, 2884143, 8367599, 24377503, 71282351, 209132511, 615447711, 1816255583, 5373748287, 15937008575, 47368376255, 141075930495, 420957812863, 1258317356799, 3767538459391
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 7*x^4 + 15*x^5 + 39*x^6 + 103*x^7 +...
The logarithm of the g.f. begins:
log(A(x)) = ((1-x) + x*A(x))*x + ((1-x)^2 + 2^2*x*(1-x)*A(x) + x^2*A(x)^2)*x^2/2 +
((1-x)^3 + 3^2*x*(1-x)^2*A(x) + 3^2*x^2*(1-x)*A(x)^2 + x^3*A(x)^3)*x^3/3 +
((1-x)^4 + 4^2*x*(1-x)^3*A(x) + 6^2*x^2*(1-x)^2*A(x)^2 + 4^2*x^3*(1-x)*A(x)^3 + x^4*A(x)^4)*x^4/4 +
((1-x)^5 + 5^2*x*(1-x)^4*A(x) + 10^2*x^2*(1-x)^3*A(x)^2 + 10^2*x^3*(1-x)^2*A(x)^3 + 5^2*x^4*(1-x)*A(x)^4 + x^5*A(x)^5)*x^5/5 +...
Explicitly,
log(A(x)) = x + x^2/2 + 7*x^3/3 + 17*x^4/4 + 41*x^5/5 + 133*x^6/6 + 393*x^7/7 + 1121*x^8/8 + 3373*x^9/9 + 10161*x^10/10 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1 + x*(1-x)*A)*(1+x^2*A^2) +x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k*(1-x)^(m-k)*A^k +x*O(x^n)))));polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k) * A(x)^k ).
Recurrence: 2*(n+1)*(2*n+3)*(1367*n^5 - 22152*n^4 + 133091*n^3 - 342822*n^2 + 320852*n - 46056)*a(n) = (25973*n^7 - 386713*n^6 + 1995969*n^5 - 3489635*n^4 - 1128062*n^3 + 4916268*n^2 + 111144*n - 1105344)*a(n-1) - (42377*n^7 - 677143*n^6 + 3973061*n^5 - 9668137*n^4 + 6180338*n^3 + 7421072*n^2 - 9286128*n + 2230560)*a(n-2) + 4*(20505*n^7 - 365088*n^6 + 2506402*n^5 - 7967959*n^4 + 10412513*n^3 + 122671*n^2 - 10870392*n + 6017148)*a(n-3) - 2*(76552*n^7 - 1463333*n^6 + 10992560*n^5 - 39638307*n^4 + 64155864*n^3 - 18295816*n^2 - 55893000*n + 38191680)*a(n-4) + 2*(76552*n^7 - 1553555*n^6 + 12502721*n^5 - 49103379*n^4 + 89371647*n^3 - 37863250*n^2 - 72758304*n + 53344368)*a(n-5) - 4*(20505*n^7 - 443007*n^6 + 3803465*n^5 - 16027031*n^4 + 31715194*n^3 - 16244518*n^2 - 25294728*n + 19078920)*a(n-6) + 4*(n-6)*(6835*n^6 - 116228*n^5 + 733337*n^4 - 1976556*n^3 + 1537404*n^2 + 1530848*n - 1351680)*a(n-7) - 4*(n-7)*(n-6)*(1367*n^5 - 15317*n^4 + 58153*n^3 - 62791*n^2 - 47292*n + 44280)*a(n-8). - Vaclav Kotesovec, Dec 21 2013
a(n) ~ c*d^n/n^(3/2), where d = 3.14415377058430689... is the root of the equation -4 + 16*d - 44*d^2 + 68*d^3 - 44*d^4 + 16*d^5 - 15*d^6 + 4*d^7 = 0 and c = 0.77951549908443860621183... - Vaclav Kotesovec, Dec 21 2013
Constant c = 1/(8*sqrt(Pi*r)), where r = 0.008185036943737927662526644... is the root of the equation -5468 + 436073*r + 8837888*r^2 + 2268581888*r^3 - 4115660800*r^4 + 2178940928000*r^5 + 3543348019200*r^6 + 1717986918400*r^7 = 0. - Vaclav Kotesovec, Jan 04 2014