A216620 Square array read by antidiagonals: T(n,k) = Sum_{c|n,d|k} phi(gcd(c,d)) for n>=1, k>=1.
1, 2, 2, 2, 4, 2, 3, 4, 4, 3, 2, 6, 5, 6, 2, 4, 4, 6, 6, 4, 4, 2, 8, 4, 10, 4, 8, 2, 4, 4, 10, 6, 6, 10, 4, 4, 3, 8, 4, 12, 7, 12, 4, 8, 3, 4, 6, 8, 6, 8, 8, 6, 8, 6, 4, 2, 8, 8, 14, 4, 20, 4, 14, 8, 8, 2, 6, 4, 8, 9, 8, 8, 8, 8, 9, 8, 4, 6, 2, 12, 4, 12, 6
Offset: 1
Examples
[----1---2---3---4---5---6---7---8---9--10--11--12] [ 1] 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6 [ 2] 2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 4, 12 [ 3] 2, 4, 5, 6, 4, 10, 4, 8, 8, 8, 4, 15 [ 4] 3, 6, 6, 10, 6, 12, 6, 14, 9, 12, 6, 20 [ 5] 2, 4, 4, 6, 7, 8, 4, 8, 6, 14, 4, 12 [ 6] 4, 8, 10, 12, 8, 20, 8, 16, 16, 16, 8, 30 [ 7] 2, 4, 4, 6, 4, 8, 9, 8, 6, 8, 4, 12 [ 8] 4, 8, 8, 14, 8, 16, 8, 22, 12, 16, 8, 28 [ 9] 3, 6, 8, 9, 6, 16, 6, 12, 17, 12, 6, 24 [10] 4, 8, 8, 12, 14, 16, 8, 16, 12, 28, 8, 24 [11] 2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 13, 12 [12] 6, 12, 15, 20, 12, 30, 12, 28, 24, 24, 12, 50 . Displayed as a triangular array: 1, 2, 2, 2, 4, 2, 3, 4, 4, 3, 2, 6, 5, 6, 2, 4, 4, 6, 6, 4, 4, 2, 8, 4, 10, 4, 8, 2, 4, 4, 10, 6, 6, 10, 4, 4, 3, 8, 4, 12, 7, 12, 4, 8, 3,
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
Programs
-
Maple
with(numtheory): T:= (n, k)-> add(add(phi(igcd(c,d)), c=divisors(n)), d=divisors(k)): seq(seq(T(n, 1+d-n), n=1..d), d=1..14); # Alois P. Heinz, Sep 12 2012
-
Mathematica
t[n_, k_] := Outer[ EulerPhi[ GCD[#1, #2]]&, Divisors[n], Divisors[k]] // Flatten // Total; Table[ t[n-k+1, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
-
Sage
def A216620(n, k) : cp = cartesian_product([divisors(n), divisors(k)]) return reduce(lambda x,y: x+y, map(euler_phi, map(gcd, cp))) for n in (1..12): [A216620(n,k) for k in (1..12)]
Comments