A216676 Digital roots of squares of Fibonacci numbers.
1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4, 9, 7, 1, 7, 9, 4, 1, 1, 9, 1, 1, 4
Offset: 1
Examples
a(7) = 7 because F(7) = 13 and 13^2 = 169, with digits adding up to 16, the digital root is therefore 7.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,-1,0,1).
Programs
-
Mathematica
a = {}; For[n = 1, n <= 100, n++, {fn2 = Fibonacci[n]^2; d = IntegerDigits[fn2]; While[Length[d] > 1, d = IntegerDigits[Total[d]]]; AppendTo[a, d[[1]]] }]; a (* John W. Layman, Sep 14 2012 *) ReplaceAll[Table[Mod[Fibonacci[n]^2, 9], {n, 72}], {0 -> 9}] (* Alonso del Arte, Sep 23 2012 *)
-
PARI
fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2] a(n)=lift(fibmod(n,9)^2-1)+1 \\ Charles R Greathouse IV, Jun 20 2017
Formula
G.f. ( -1-x-3*x^2-8*x^3-3*x^4+8*x^5-9*x^7-x^6 ) / ( (x-1) *(1+x) *(x^2+1) *(x^4-x^2+1) ). - R. J. Mathar, Sep 15 2012
Extensions
Terms a(25)-a(72) by John W. Layman, Sep 14 2012
Terms a(73) and beyond from Andrew Howroyd, Feb 25 2018
Comments