A216684 Primes p such that p - phi(k)^2 is not prime for 1 <= phi(k)^2 < p.
2, 5, 13, 31, 37, 61, 127, 379, 439, 571, 619, 739, 829, 991, 1549, 3109, 3301, 3319, 5749, 7549, 7879, 48799
Offset: 1
Examples
31 is in the sequence because : 31 - phi(1)^2 = 31 - 1^2 = 30 is composite; 31 - phi(2)^2 = 31 - 1^2 = 30 is composite; 31 - phi(3)^2 = 31 - 2^2 = 27 is composite; 31 - phi(4)^2 = 31 - 2^2 = 27 is composite; 31 - phi(5)^2 = 31 - 4^2 = 15 is composite; 31 - phi(6)^2 = 31 - 2^2 = 27 is the last composite because phi(7)^2 = 6^2 > 31.
Programs
-
Maple
with(numtheory):for n from 1 to 10000 do:ii:=0:p:=ithprime(n):for k from 1 to p while(p-phi(k)^2>0) do: if type(p- phi(k)^2,prime) =true then ii:=1:else fi:od:if ii=0 then printf(`%d, `,p):else fi:od:
Comments