cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216695 Number of compositions (ordered partitions) of n into at least 2 distinct positive parts.

Original entry on oeis.org

0, 0, 0, 2, 2, 4, 10, 12, 18, 26, 56, 64, 100, 132, 192, 350, 434, 616, 850, 1176, 1554, 2750, 3296, 4756, 6292, 8760, 11304, 15602, 24314, 30460, 41866, 55740, 74874, 98042, 130808, 168424, 257404, 315972, 431064, 558326, 751490, 958264, 1277866, 1621272, 2123586, 3020630, 3768440
Offset: 0

Views

Author

César Eliud Lozada, Sep 16 2012

Keywords

Comments

Inspired and generalized from Kakuro game, a Japanese crossword type game where cells must be filled with different digits 1..9 adding up to the clues.
If permutations are considered equivalent then a(n) = A111133(n) = A000009(n) - 1.

Examples

			a(4)=2 because 4 = 1+3 = 3+1 (2 ways).
a(6)=10 because 6 = 1+5 = 2+4 = 4+2 = 5+1 = 1+2+3 = 1+3+2 = 2+1+3 = 2+3+1 = 3+1+2 = 3+2+1 (10 ways).
		

Crossrefs

Programs

  • Mathematica
    nc[n_]:=Total[Length[#]!&/@Select[IntegerPartitions[n],Length[#]>1&&Max[ Tally[ #][[All,2]]]==1&]]; Array[nc,50,0] (* Harvey P. Dale, May 27 2018 *)
  • PARI
    N=66;  x='x+O('x^N);
    gf=sum(k=0,N, k!*x^((k^2+k)/2) / prod(j=1,k, 1-x^j)) - 1/(1-x);
    v=Vec(gf);
    vector(#v+1,n,if(n==1,0,v[n-1]))
    /* Joerg Arndt, Sep 17 2012 */

Formula

a(n) = A032020(n) - 1.
G.f.: (Sum_{k>=0} k!*x^((k^2+k)/2) / Product_{j=1..k} (1-x^j)) - 1/(1-x). - Joerg Arndt, Sep 17 2012

Extensions

More terms from Joerg Arndt, Sep 17 2012