cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216708 Number of compositions (ordered partitions) of n into 2 or more distinct nonnegative parts.

Original entry on oeis.org

0, 2, 2, 10, 10, 18, 48, 56, 86, 124, 298, 336, 540, 722, 1070, 2122, 2614, 3810, 5316, 7496, 9986, 18940, 22558, 33336, 44568, 63074, 82034, 114754, 187642, 234690, 328536, 441872, 602006, 794020, 1072546, 1389408, 2207532, 2706266, 3752462, 4900474, 6681022, 8574906
Offset: 0

Views

Author

César Eliud Lozada, Sep 16 2012

Keywords

Comments

If permutations are considered equivalent then a(n)=A087135(n)=2*A000009(n) for n>0.
All terms are even. - Alois P. Heinz, Aug 18 2018

Examples

			a(2)=2 because 2 = 0+2 = 2+0 (2 ways)
a(3)=10 because 3 = 0+3 = 1+2 = 2+1 = 3+0 = 0+1+2 = 0+2+1 = 1+0+2 = 1+2+0 = 2+0+1 = 2+1+0 (10 ways)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; (m-> `if`(m b(n$2, 0):
    seq(a(n), n=0..42);  # Alois P. Heinz, Aug 18 2018
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = With[{m = i(i+1)/2}, If[m < n, 0, If[n == 0,
         If[p == 0, 0, If[p == 1, 2, p! (p+2)]], b[n, i-1, p] +
         b[n-i, Min[n-i, i-1], p+1]]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 42] (* Jean-François Alcover, Mar 05 2021, after Alois P. Heinz *)
  • PARI
    N=66;  x='x+O('x^N);
    gf=sum(k=0,N, (k+1)!*x^((k^2+k)/2) / prod(j=1,k+1, 1-x^j)) - 1/(1-x);
    v=Vec(gf);
    vector(#v+1,n,if(n==1,0,v[n-1]))
    /* Joerg Arndt, Sep 17 2012 */

Formula

From Joerg Arndt, Sep 17 2012: (Start)
G.f. sum(k>=0, (k+1)!*x^((k^2+k)/2) / prod(j=1..k+1, 1-x^j)) - 1/(1-x);
explanation: the g.f. for partitions into at least two positive parts (A111133) is
sum(k>=0, x^((k^2+k)/2) / prod(j=1..k, 1-x^j)) - 1/(1-x)
(i.e., the g.f. of A000009 minus the g.f. 1/(1-x) for the constant sequence a(n)=1 that counts the single partition n = [n]);
the factor (k+1)! in the g.f. of this function provides for the permutations of the parts, including a zero.
(End)

Extensions

More terms, Joerg Arndt, Sep 17 2012