cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216710 Expansion of (1-3*x+x^2)^2/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).

Original entry on oeis.org

1, 3, 10, 35, 126, 460, 1690, 6225, 22950, 84626, 312019, 1150208, 4239225, 15621426, 57556155, 212037241, 781074572, 2877011660, 10596599460, 39027676220, 143735627861, 529352597361, 1949472483601, 7179308057596, 26438877143476, 97364252272077
Offset: 0

Views

Author

Philippe Deléham, Apr 09 2013

Keywords

Comments

A diagonal of the square array A223968.

Crossrefs

Cf. A223968.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3 x + x^2)^2/(1 - 9 x + 28 x^2 - 35 x^3 + 15 x^4 - x^5), {x, 0, 25}], x] (* Michael De Vlieger, Aug 19 2015 *)
    LinearRecurrence[{9, -28, 35, -15, 1},{1, 3, 10, 35, 126},26] (* Ray Chandler, Aug 28 2015 *)
  • PARI
    Vec((1-3*x+x^2)^2/(1-9*x+28*x^2-35*x^3+15*x^4-x^5) + O(x^30)) \\ Colin Barker, Aug 19 2015

Formula

a(n) = A223968(n,n+1).
G.f.: (1-3*x+x^2)^2/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).
a(n) = 9*a(n-1) - 28*a(n-2) + 35*a(n-3) - 15*a(n-4) + a(n-5) with a(0) = 1, a(1) = 3, a(2) = 10, a(3) = 35, a(4) = 126.