A216747 Primes p such that x^32 = -2 has no solution mod p.
5, 7, 13, 17, 23, 29, 31, 37, 41, 47, 53, 61, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 137, 149, 151, 157, 167, 173, 181, 191, 193, 197, 199, 223, 229, 233, 239, 241, 257, 263, 269, 271, 277, 293, 311, 313, 317, 337, 349, 353, 359, 367, 373, 383, 389, 397
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[ p: p in PrimesUpTo(400) | not exists{x : x in ResidueClassRing(p) | x^32 eq -2} ]; //
-
Mathematica
ok[p_]:=Reduce[Mod[x^32 + 2, p] == 0, x, Integers] == False;Select[Prime[Range[200]], ok]
Extensions
Definition corrected by Georg Fischer, Feb 28 2021
Comments