A051093 Primes p such that x^48 = -2 has a solution mod p.
2, 3, 11, 43, 59, 83, 107, 131, 179, 227, 251, 257, 281, 283, 307, 347, 419, 443, 467, 491, 499, 563, 587, 617, 643, 659, 683, 691, 739, 811, 827, 947, 971, 1019, 1049, 1051, 1091, 1097, 1163, 1187, 1193, 1259, 1283, 1307, 1427, 1451, 1459, 1481, 1499, 1523
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(1550) | exists(t){x : x in ResidueClassRing(p) | x^48 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
-
Maple
isA051093 := proc(p) local x; for x from 0 to p-1 do if (x^48 mod p) = (-2 mod p) then RETURN(true) ; fi; od: RETURN(false) ; end: for i from 1 to 300 do p := ithprime(i) ; if isA051093(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Oct 15 2008
-
Mathematica
ok[p_]:= Reduce[Mod[x^48 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
-
PARI
/* see A051071 */
Extensions
Extended by R. J. Mathar, Oct 15 2008
Comments