A216838 Odd primes for which 2 is not a primitive root.
7, 17, 23, 31, 41, 43, 47, 71, 73, 79, 89, 97, 103, 109, 113, 127, 137, 151, 157, 167, 191, 193, 199, 223, 229, 233, 239, 241, 251, 257, 263, 271, 277, 281, 283, 307, 311, 313, 331, 337, 353, 359, 367, 383, 397, 401, 409, 431, 433, 439, 449, 457, 463, 479
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Anand Bhardwaj, Luisa Degen, Radostin Petkov, and Sidney Stanbury, A Study of Cunningham Bounds through Rogue Primes, arXiv:2311.13375 [math.NT], 2023.
Crossrefs
Programs
-
Maple
select(t -> isprime(t) and numtheory[order](2,t) <> t-1, [seq](2*i+1,i=1..1000)); # Robert Israel, May 20 2014
-
Mathematica
Select[Prime[Range[2, 100]], PrimitiveRoot[#] =!= 2 &] (* T. D. Noe, Sep 19 2012 *)
-
PARI
forprime(p=3, 1000, if(znorder(Mod(2,p))!=p-1, print(p)))
-
PARI
forprime(p=3, 1000, if(factormod((x^p+1)/(x+1), 2, 1)[1, 1]!=(p-1), print(p)))
Extensions
Name corrected by Wolfdieter Lang, May 19 2014
Comments