A216845 Numbers n such that the polynomial 1 + x + x^2 + x^3 + x^4 + ... + x^(n-1) is reducible over GF(2).
4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1
Keywords
Programs
-
Mathematica
reducibleQ[n_] := Module[{f = FactorList[Sum[x^i, {i, 0, n - 1}], Modulus -> 2]}, Length[f] > 2 || f[[2, 2]] > 1]; Select[Range[2, 100], reducibleQ] (* T. D. Noe, Sep 19 2012 *)
-
PARI
for(i=4, 100, if(isprime(i), if(znorder(Mod(2, i))!=(i-1), print(i)), print(i))) \\ V. Raman, Oct 14 2012
-
PARI
is(n)=n>3 && (!isprime(n) || znorder(Mod(2,n))
Charles R Greathouse IV, Oct 16 2012
Comments