cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216865 16k^2-32k+8 interleaved with 16k^2-16k+8 for k>=0.

Original entry on oeis.org

8, 8, -8, 8, 8, 40, 56, 104, 136, 200, 248, 328, 392, 488, 568, 680, 776, 904, 1016, 1160, 1288, 1448, 1592, 1768, 1928, 2120, 2296, 2504, 2696, 2920, 3128, 3368, 3592, 3848, 4088, 4360, 4616, 4904, 5176, 5480, 5768, 6088, 6392, 6728, 7048, 7400, 7736
Offset: 0

Views

Author

Eddie Gutierrez, Sep 18 2012

Keywords

Comments

The sequence (the first in the family) is present as a family of single interleaved sequence of which are separated or factored out of the larger sequence to give individual sequences. The larger sequence produces four smaller interleaved sequences where one of them has the formula above and a second interleaved sequences having the formulas (16n^2-24n+1) and (16n^2-6n+5). This interleaved sequence is A214393. The fourth interleaved sequence in the group has the formulas (16n^2-8n-7) and (16n^2+2n+5) and it is A214405. There are a total of four sequences in this family.

Crossrefs

Programs

  • Magma
    &cat[[16*k^2-32*k+8, 16*k^2-16*k+8]: k in [0..23]]; // Bruno Berselli, Oct 01 2012
    
  • Mathematica
    Flatten[Table[{16 n^2 - 32 n + 8, 16 n^2 - 16 n + 8}, {n, 0, 23}]] (* Bruno Berselli, Sep 30 2012 *)
  • PARI
    vector(47, n, k=(n-1)\2; if(n%2, 16*k^2-32*k+8, 16*k^2-16*k+8)) \\ Bruno Berselli, Oct 01 2012

Formula

G.f.: 8*(1-x-3*x^2+5*x^3)/((1+x)*(1-x)^3). [Bruno Berselli, Sep 30 2012]
a(n) = 2*(2*n*(n-4)-3*(-1)^n+7). [Bruno Berselli, Sep 30 2012]
a(n) = 8*A178218(n-3) with A178218(-3)=1, A178218(-2)=1, A178218(-1)=-1, A178218(0)=1. [Bruno Berselli, Oct 01 2012]

Extensions

Definition rewritten by Bruno Berselli, Oct 25 2012