A216865 16k^2-32k+8 interleaved with 16k^2-16k+8 for k>=0.
8, 8, -8, 8, 8, 40, 56, 104, 136, 200, 248, 328, 392, 488, 568, 680, 776, 904, 1016, 1160, 1288, 1448, 1592, 1768, 1928, 2120, 2296, 2504, 2696, 2920, 3128, 3368, 3592, 3848, 4088, 4360, 4616, 4904, 5176, 5480, 5768, 6088, 6392, 6728, 7048, 7400, 7736
Offset: 0
Links
- Eddie Gutierrez New Interleaved Sequences Part C on oddwheel.com, Section B1 Line No. 23 (square_sequencesIII.html) Part C
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
&cat[[16*k^2-32*k+8, 16*k^2-16*k+8]: k in [0..23]]; // Bruno Berselli, Oct 01 2012
-
Mathematica
Flatten[Table[{16 n^2 - 32 n + 8, 16 n^2 - 16 n + 8}, {n, 0, 23}]] (* Bruno Berselli, Sep 30 2012 *)
-
PARI
vector(47, n, k=(n-1)\2; if(n%2, 16*k^2-32*k+8, 16*k^2-16*k+8)) \\ Bruno Berselli, Oct 01 2012
Formula
G.f.: 8*(1-x-3*x^2+5*x^3)/((1+x)*(1-x)^3). [Bruno Berselli, Sep 30 2012]
a(n) = 2*(2*n*(n-4)-3*(-1)^n+7). [Bruno Berselli, Sep 30 2012]
Extensions
Definition rewritten by Bruno Berselli, Oct 25 2012
Comments