A216881 Primes p such that x^7 = 3 has a solution mod p.
2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 47, 53, 59, 61, 67, 73, 79, 83, 89, 97, 101, 103, 107, 109, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 199, 223, 227, 229, 233, 241, 251, 257, 263, 269, 271, 277, 283, 293, 307, 311, 313, 317
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(500) | exists(t){x: x in ResidueClassRing(p) | x^7 eq 3}];
-
Mathematica
ok[p_] := Reduce[Mod[x^7 - 3, p] == 0, x, Integers] =!= False; Select[Prime[Range[150]], ok]
Comments