A216917 Square array read by antidiagonals, T(N,n) = lcm{1<=j<=N, gcd(j,n)=1 | j} for N >= 0, n >= 1.
1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 12, 3, 2, 1, 1, 60, 3, 2, 1, 1, 1, 60, 15, 4, 3, 2, 1, 1, 420, 15, 20, 3, 6, 1, 1, 1, 840, 105, 20, 15, 12, 1, 2, 1, 1, 2520, 105, 140, 15, 12, 1, 6, 1, 1, 1, 2520, 315, 280, 105, 12, 5, 12, 3, 2, 1, 1, 27720, 315, 280, 105, 84
Offset: 1
Examples
n | N=0 1 2 3 4 5 6 7 8 9 10 -----+------------------------------------- 1 | 1 1 2 6 12 60 60 420 840 2520 2520 2 | 1 1 1 3 3 15 15 105 105 315 315 3 | 1 1 2 2 4 20 20 140 280 280 280 4 | 1 1 1 3 3 15 15 105 105 315 315 5 | 1 1 2 6 12 12 12 84 168 504 504 6 | 1 1 1 1 1 5 5 35 35 35 35 7 | 1 1 2 6 12 60 60 60 120 360 360 8 | 1 1 1 3 3 15 15 105 105 315 315 9 | 1 1 2 2 4 20 20 140 280 280 280 10 | 1 1 1 3 3 3 3 21 21 63 63 11 | 1 1 2 6 12 60 60 420 840 2520 2520 12 | 1 1 1 1 1 5 5 35 35 35 35 13 | 1 1 2 6 12 60 60 420 840 2520 2520
Programs
-
Mathematica
t[, 0] = 1; t[n, k_] := LCM @@ Select[Range[k], CoprimeQ[#, n]&]; Table[t[n - k + 1, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
-
Sage
def A216917(N, n): return lcm([j for j in (1..N) if gcd(j, n) == 1]) for n in (1..13): [A216917(N,n) for N in (0..10)]
Comments